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Eigenfunction-Based Multitask Learning
in a Reproducing Kernel Hilbert Space

Xinmei Tian , Member, IEEE, Ya Li, Tongliang Liu , Xinchao Wang, and Dacheng Tao , Fellow, IEEE

Abstract— Multitask learning aims to improve the performance
on related tasks by exploring the interdependence among them.
Existing multitask learning methods explore the relatedness
among tasks on the basis of the input features and the model
parameters. In this paper, we focus on nonparametric multitask
learning and propose to measure task relatedness from a novel
perspective in a reproducing kernel Hilbert space (RKHS). Past
works have shown that the objective function for a given task can
be approximated using the top eigenvalues and corresponding
eigenfunctions of a predefined integral operator on an RKHS.
In our method, we formulate our objective for multitask learning
as a linear combination of two sets of eigenfunctions, common
eigenfunctions shared by different tasks and unique eigenfunc-
tions in individual tasks, such that the eigenfunctions for one
task can provide additional information on another and help to
improve its performance. We present both theoretical and empiri-
cal validations of our proposed approach. The theoretical analysis
demonstrates that our learning algorithm is uniformly argument
stable and that the convergence rate of the generalization upper
bound can be improved by learning multiple tasks. Experiments
on several benchmark multitask learning data sets show that our
method yields promising results.

Index Terms— Eigenfunction-based learning, multitask
learning, regression, task relatedness.

I. INTRODUCTION

IN RECENT years, multitask learning has been widely
studied in various fields, such as metric learning [1]–[3],

image and video research [4], and disease prediction [5], [6].
The main advantage of multitask learning is the ability to
explore the intrinsic interdependence among different tasks,
through which all tasks can benefit each other. As a result,
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multitask learning methods usually achieve better performance
than single-task learning methods.

The key challenge of multitask learning is measuring the
relationships among different tasks. Existing multitask learn-
ing methods can be categorized into two classes based on the
methods used to measure the task relationships. In the first
class of methods, it is assumed that related tasks share a set
of common features [7]–[10], while in the second class of
methods, it is assumed that different tasks share some common
parameters [10]–[14]. Both classes of methods involve the
imposition of direct regularizations, on either features or
parameters, to learn the relatedness of multiple tasks. However,
some of these regularizations are too strong, making the
objective functions difficult to solve.

In this paper, we propose a novel multitask learning
algorithm that utilizes a different measure of task related-
ness. Unlike previous methods, in which task relatedness is
measured using common features or model parameters, our
method measures the interdependence among tasks through
the relatedness of eigenfunctions. The objective function for
a particular task, in a manner similar to regression, can be
approximated as a linear combination of the top eigenvalues of
a predefined integral operator on a reproducing kernel Hilbert
space (RKHS) [15]–[17]. In our method, we assume that
related tasks share a set of common eigenfunctions and that
each task also has a set of unique eigenfunctions, which are
sparse. We formulate our objective function as a linear combi-
nation of both sets of eigenfunctions, such that the functions
associated with one task may provide additional information
to benefit others. Moreover, since the eigenfunctions can be
explicitly computed from the input features with an associated
kernel function, our method can be readily extended to any
type of kernel version. Please note that our method is not
suitable for parametric multitask learning problems [18].

We propose an efficient optimization algorithm for solving
our objective function, which has two regularization terms.
One is an L1-norm regularization to guarantee the sparsity
of the task-specific eigenfunctions. The other is an L2-norm
regularization on the shared eigenfunctions to constrain the
complexity of the trained model. We present a theoretical
analysis to show that our learning algorithm is uniformly
argument stable, meaning that the output is not sensitive to
subtle changes in the input. In addition, we show that the
convergence rate of the generalization upper bound is related
to the number of training samples and the number of tasks.
This means that when either the training set size or the number
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of tasks increases, the generalization error will decrease. Our
experimental results obtained on benchmark data sets further
validate our proposed approach.

The remainder of this paper is organized as follows.
In Section II, we briefly review related works. We present
the details of our proposed algorithm and the optimization
algorithm in Section III, and we derive a theoretical analysis
to demonstrate the effectiveness of the proposed multitask
learning method in Section IV. We report experimental results
obtained on several landmark data sets in Section V. We
conclude this paper and discuss future work in Section VI.

II. RELATED WORK

Recent works have demonstrated the success and devel-
opment of multitask learning in various domains [1], [7],
[19]–[23]. In traditional single-task learning methods, related
tasks are learned separately, and the positive interactions
among different tasks are ignored, which lead to a loss of
valuable information regarding the data distribution. Given the
drawbacks of single-task learning methods, multitask learning
has been proposed to explore the intrinsic relatedness among
different tasks through the joint learning of multiple tasks.
Proper measurements of task relatedness can help to gain
additional information on all tasks, particularly when the
number of training data is insufficient. Additional information
gained from other tasks can help to compensate for the lack of
training samples. Consequently, multitask learning is applied
with the goal of improving the performance on all tasks.

Given the successful applications of multitask learning,
various traditional single-task learning methods have been
extended to multitask learning algorithms. For example, sup-
port vector machine (SVM) [24], as one of the most popular
machine learning algorithms, has been investigated in vari-
ous multitask learning studies [11], [25]–[27]. Evgeniou and
Pontil [11] proposed a classic SVM-based multitask learn-
ing framework, which has been referenced by many other
researchers. In the proposed regularized multitask learning
method, it is assumed that the hyperplanes of all tasks are
close to one central hyperplane with an offset. Li et al. [25]
extended the proximal SVM approach into a multitask learn-
ing framework to improve the efficiency of multitask learn-
ing. The proposed multitask proximal vector machine model
can be solved explicitly with high efficiency and compara-
ble performance. Jebara [26] proposed learning a common
feature selection and kernel selection for multitask SVMs
with maximum entropy discrimination. Metric learning has
also been extended to a multitask learning framework. Para-
meswaran and Weinberger [1] studied multitask large margin
nearest neighbor metric learning and achieved much better
performance than that achieved with single-task large mar-
gin nearest-neighbor metric learning. Ma et al. [2] applied
multitask distance metric learning for person reidentification
and achieved considerably improved performance. In their
approach, multiple distance metrics are learned jointly to
measure the distances of images from different camera pairs.

In recent years, multitask deep learning has been applied
in various research fields. Zhang et al. [28] utilized multitask

deep learning to improve the robustness of facial land-
mark detection by simultaneously considering correlated tasks
such as head pose estimation and facial attribute inference.
Liu et al. [29] applied multitask deep learning in video thumb-
nail selection, using two highly related data sets to explore
query-thumbnail relevance. In the work of Zhang et al. [30],
multitask deep convolutional neural networks were utilized to
improve performance in multiview face detection. The con-
structed multitask deep neural networks were simultaneously
trained for face/nonface decisions, face pose estimation, and
facial landmark localization.

Due to the good performance of multitask learning in vari-
ous applications, some researchers have attempted to theoret-
ically demonstrate the merits of multitask learning [21], [23],
[31], [32]. Liu et al. [31] proposed an algorithm-dependent
generalization bound for multitask learning based on algo-
rithmic stability. Subject to a mild assumption regarding the
feature structures, the authors observed that the functions
associated with other tasks can be viewed as regularizers
for a given task. Li et al. [21] proposed the use of the
RKHS of vector-valued functions as a hypothesis space for
multitask classification. They derived an improved empirical
Rademacher complexity-based generalization bound and dis-
cussed the relationship between a group lasso regularizer and
the proposed hypothesis space. An algorithm for multitask
learning from unlabeled data was proposed by Ando and
Zhang [32]. Their paper presented a general framework for
formulating the structural learning problem and analyzed it
theoretically. Maurer et al. [23] applied sparse coding in mul-
titask learning and transfer learning. Their paper adopted the
assumption that the parameters of tasks can be approximated
well through a sparse linear combination of the atoms of a
high-dimensional dictionary, and a generalization error bound
for the proposed approach was given. All these works have
presented valid theoretical analyses of multitask learning.

Multitask learning is based on the assumption that the tasks
to be learned are indeed related. However, the method for
measuring the relatedness among different tasks is always
a key problem. Common feature representation sharing and
common parameter sharing are two popular methods of explor-
ing the relatedness among multiple tasks. Among methods
based on feature sharing, Argyriou et al. [7] proposed a convex
multitask feature learning (CMTL) algorithm with L21-norm
regularization of the parameters. This regularization has the
ability to ensure the learning of a sparse feature representation
shared across different tasks. Zhang and Yeung [33] proposed
a convex formulation for multitask learning that can be used to
estimate task relationships automatically. Ciliberto et al. [34]
proposed a general computational framework for multitask
learning in which a priori knowledge of the task structure
is encoded with a convex penalty. In the setting of that paper,
some previous proposals could be recovered as special cases.
A nonconvex multitask sparse feature learning method was
proposed by Gong et al. [9]. The authors noted the drawbacks
of previous convex formulations of multitask feature learning
and argued that the proposed method could achieve a better
parameter estimation error bound that could be achieved with
a convex formulation.
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Fig. 1. Framework of our proposed EMTL method. Three different tasks are considered in this figure. We first explicitly learn the top eigenfunctions from
the input features for each task. Then, all tasks are learned jointly to identify a set of shared eigenfunctions from among those for all tasks. Because of the
uniqueness of each task, each task also has another set of sparse basis eigenfunctions that represent its unique characteristics. The final model for each task
is approximated as a combination of the shared eigenfunctions and the particular eigenfunctions in each task.

Considering methods based on parameter sharing,
Rai and Daume [14] proposed a nonparametric Bayesian
model that captures task relatedness under the assumption
that the task parameters share a latent subspace. In addition,
the proposed method can use both labeled and unlabeled
data to assist in learning this subspace, leading to further
improvement in performance. Xue et al. [12] proposed an
efficient multitask learning algorithm based on a Dirichlet
process-based statistical model. The proposed algorithm can
automatically group similar tasks whose training data might
be drawn from similar distributions.

In most of these methods, task relatedness is measured
directly by means of regularizations applied to features from
the training data or to the model parameters. However, some
regularizations are too strict, and the objective functions are
difficult to optimize. For example, in the method proposed
in [7], the features are regularized with an L21-norm reg-
ularization, which assumes that all tasks share a subset of
features. This assumption is too strong because it ignores the
possibility that some tasks may have features that are not
shared with other tasks. In addition, the objective function
is nonconvex because of the L21-norm regularization. It is
difficult to solve such nonconvex problems directly. Instead,
such a problem must be transformed into an equivalent convex
optimization problem for efficient computation. In addition,
the extension of such methods to kernel methods is usually
complicated, and thus, the resulting methods are difficult to
implement. For example, the method proposed in [33] has a
convex formulation for multitask learning. However, when it
is extended to a kernel version, the objective function must
be changed, and the optimization procedure becomes more
complex.

III. EIGENFUNCTION-BASED MULTITASK

LEARNING METHOD

In this section, we present the details of our eigenfunction-
based multitask learning (EMTL) method. We first introduce

the algorithm for approximating the target function using
eigenfunctions and then describe our EMTL method, followed
by an iterative optimization algorithm for optimizing the
objective function.

The framework of our EMTL method is illustrated in Fig. 1,
where we consider three different tasks. Each task is associated
with a set of features that are used to learn the eigenfunctions
for that task. All the tasks are then learned jointly using the
eigenfunctions from all tasks. We assume that all tasks share a
set of eigenfunctions and that each task also has a sparse set of
task-specific eigenfunctions that represent its characteristics.
The final model for each task can be approximated as a
combination of the shared eigenfunctions and its task-specific
eigenfunctions.

A. Explicit Eigenfunction Learning

Here, we give a brief introduction to the algorithm for
learning explicit eigenfunctions from features to approximate
the target function, which is mainly inspired by [15] and [16].
Suppose that we have a data set of n samples, Dt =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X denotes the i th
input feature from a compact manifold in the Euclidean space
Rm and yi ∈ Y is the corresponding output in the Euclidean
space R. Let Z = X ×Y , with a Borel probability measure ρ.
In addition, let ρX be the marginal probability on X , and let
ρ(y|x) be the conditional probability of y given x . In this
paper, we mainly focus on the regression problem y = f (x),
where f (·) is our target function. Then, the regression function
fρ(x) can be formulated as follows:

fρ(x) =
∫

Y
ydρ(y|x). (1)

Our goal is to approximate an accurate prediction function
fρ(x) using the given training data in an RKHS. Let K (·, ·) :
X × X → R be a Mercer kernel, and let HK be an RKHS
associated with the Mercer kernel K (·, ·). An integral operator
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L K on HK is defined as follows:

L K ( f ) =
∫
X

K (·, x) f (x)dρX (x), f ∈ HK . (2)

Let (�i (x), λi ), i = 1, 2, . . . , n, be the eigenfunctions and
eigenvalues of L K ranked in descending order of the eigen-
values, where the eigenfunctions �i (x), i = 1, 2, . . . , n, form
an orthonormal basis of HK . The regression function f (x)
can be approximated by a linear combination of the top m
eigenfunctions with nonzero eigenvalues of L K [15]. This
function can be formulated as follows:

f (x) =
m∑

i=1

Ci�i (x) (3)

where m is the number of top eigenfunctions that are used
to approximate the target regression function and can be
determined empirically. Ci is the coefficient of the i th eigen-
function �i (·). The eigenpairs (λi ,�i (·)) can be explicitly
found from the given features of the training data as follows.
Let K: (K (xi , x j ))

n
i, j=1 be the Gramian matrix formed by the

kernel K (·, ·) with the training data, and let d ≤ n be the
rank of the Gramian matrix. The eigenvalues are arranged in
descending order as λ̂1 ≥ · · · ≥ λ̂d ≥ λ̂d+1 = · · · = λ̂n ,
and the corresponding eigenvectors are {ûi }n

i=1, which form
an orthonormal basis of Rn . We thus have

λi = λ̂i

n

�i (·) = 1√
λ̂i

n∑
j=1

(ûi ) j K (·, x j ), for i = 1, . . . , d. (4)

Since the eigenfunctions can be explicitly computed, our goal
is to obtain their corresponding coefficients. In Section III-B,
we propose our EMTL algorithm, which uses these explicitly
computed eigenfunctions. The coefficients for all tasks are
jointly learned by means of their shared set of eigenfunctions.

B. Eigenfunction-Based Multitask Learning Algorithm

Suppose that we have T different tasks, each of which
is related to a set of data Dt = {(xt1, yt1), (xt2, yt2), . . . ,
(xtnt , ytnt )}, where nt is the number of training samples
for task t . We first compute the eigenpairs {λt i ,�t i (·)} for
task t according to (4), where λt i is the eigenvalue and �t i

is the corresponding eigenfunction. For clarity of notation,
we rewrite the eigenpairs for task t as follows. Let dt ≤ nt be
the rank of the Gramian matrix (K (xti , xt j )

nt
i, j=1). We order

the eigenvalues as λ̂t1 ≥ · · · ≥ λ̂dt ≥ λ̂dt +1 = · · · = λ̂nt = 0,
and the associated eigenvectors are {μ̂t i }nt

t i=1. We have

λt i = λ̂t i

nt

�t i(·) = 1√
λ̂t i

nt∑
j=1

(μt i) j K (·, xt j ), for i = 1, . . . , dt . (5)

Our method measures the relatedness of different tasks
through the eigenfunctions {�t i(·)}. We assume that some

eigenfunctions are shared among the tasks and that the eigen-
functions for one task may benefit the others. To prevent all
tasks from being performed similarly due to the influence
of the shared eigenfunctions, our model maintains a set of
nonshared eigenfunctions for each task. The objective of our
EMTL method is formulated as follows:

min
Ct ,C0

1

T

T∑
t=1

1

nt

nt∑
i=1

⎛
⎝ d∑

j=1

(Ct j + C0 j )� j (xti) − yti

⎞
⎠

2

+ γ ‖C‖1 + β‖��C0‖2
2 (6)

where C = [C1, C2, . . . , CT ] and d = d1 + d2 + · · · + dT ,
with the latter denoting the total number of eigenfunctions
identified from all tasks. The eigenfunctions from all tasks,
{�t i(·)}dt

i=1, t = 1, . . . , T , are combined into a single complete
set, {� j (·)}d

j=1.
To consider the effects of (1/T ) and (1/nt ), we adopt

the notation �(xti) = [�1(xti) × (1/
√

T nt ),�2(xti) ×
(1/

√
T nt ), . . . ,�d (xti) × (1/

√
T nt )]� ∈ Rd to repre-

sent a vector of the values of all eigenfunctions given
the input xti . In addition, Xt = [xt1, xt2, . . . , xtnt ] ∈
Rm×nt denotes the data matrix from task t , and �(Xt ) =
[�(xt1),�(xt2), . . . ,�(xtnt )] ∈ Rd×nt is a matrix of the
values of all eigenfunctions given the training data for task t .
Let � denote a matrix with entries corresponding to the
values of all eigenfunctions given the inputs from all tasks,
� = [�(X1),�(X2), . . . ,�(XT )]. C0 ∈ Rd is the vector of
the coefficients of the shared eigenfunctions, and C0 j denotes
the j th entry of the vector C0. Ct ∈ Rd is the coefficient vector
for the task-specific eigenfunctions of task t . The first term in
the objective function is the loss between the prediction output
and the ground truth. The second term is the regularization
of the coefficients Ct . We constrain Ct using an L1-norm
regularization, which leads to a sparse set of coefficients.
The third term is a Tikhonov regularization of C0 with a
Tikhonov matrix �, which controls the complexity of the
model. γ and β are two tradeoff parameters, which can be
determined empirically. If (γ /β) is set at a large value, then
the coefficient vector Ct will tend toward zero; in this case, all
tasks are closely related and tend to share most eigenfunctions,
with few or no task-specific eigenfunctions. By contrast, when
the value (γ /β) approaches zero, we obtain small values of the
coefficients in C0 that correspond to the shared eigenfunctions,
in which case, the above-mentioned objectives can be viewed
as T separate single-task learning problems that are very
weakly related.

Let {Ĉt }d
t=1 and Ĉ0 be the solutions to the above-mentioned

objective functions. Our target regression function for task t
can be written as follows:

ft (xti) =
d∑

j=1

(Ĉt j + Ĉ0 j )�t j (xti) (7)

where xti is the i th input for task t and ft (xti ) is the predicted
value for task t with input xti .

C. Optimization Algorithm

In this section, we present our iterative algorithm for
optimizing the above-mentioned objective function (6) with
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respect to C0 and {Ct }T
t=1. The details of the algorithm are

given in Algorithm 1.
It is difficult to obtain the closed-form solution

({Ct }T
t=1, C0) to the objective function because of the

shared coefficients C0. We therefore iteratively optimize
the objective function with respect to C0 and {Ct }T

t=1.
We first optimize the objective function with respect to
the parameter vector C0 by fixing the parameter vectors
{Ct }T

t=1. For simplicity and clarity of notation, we introduce
some additional variables and rewrite the formulation given
in (6). Recall that �(xti) = [�1(xti) × (1/

√
T nt ),�2(xti) ×

(1/
√

T nt ), . . . ,�d (xti) × (1/
√

T nt )]� ∈ Rd is a vector
of the values of all eigenfunctions given the input xti ,
that Xt = [xt1, xt2, . . . , xtnt ] ∈ Rm×nt , and that
�(Xt ) = [�(xt1),�(xt2), . . . ,�(xtnt )] ∈ Rd×nt is a
matrix of the values of all eigenfunctions given the training
data for task t . The optimization with respect to C0 requires
the training data for all tasks. Therefore, we adopt the notation
�(X) = bdiag(�(X1),�(X2), . . . ,�(XT )) ∈ RdT×N , where
bdiag(�(X1),�(X2), . . . ,�(XT )) is a block diagonal matrix
whose diagonal entries correspond to the outputs of all
eigenfunctions given the data for task t , that is,

�(X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�(X1)
�(X2)

·
·

·
�(XT )

⎞
⎟⎟⎟⎟⎟⎟⎠

.

N denotes the total number of training samples for all tasks,
as follows:

N = n1 + n2 + · · · + nT .

The output for all tasks is denoted by Y =
[Y �

1 , Y �
2 , . . . , Y �

T ]� ∈ RN , where Yt = [yt1×(1/
√

T nt ), yt3×
(1/

√
T nt ), . . . , ytnt × (1/

√
T nt )]�, considering the

effects of (1/T ) and (1/nt ) in (6). In addition, let
Ĉ = [C�

1 , C�
2 , . . . , C�

T ]� ∈ RdT , let I be the identity
matrix of dimension d , and let I0 = [I, I, . . . , I︸ ︷︷ ︸

T

]� ∈ RdT×d .

We introduce a new variable Ĉ0 = I0 × C0. By ignoring the
regularization term γ ‖C‖1, the formulation given in (6) can
then be reformulated as follows:

min
C0

‖Y − �(X)�(Ĉ0 + Ĉ)‖2
2 + β‖��C0‖2

2. (8)

We replace Ĉ0 with I0 × C0 and rewrite the above-mentioned
objective as a standard L2-norm regularized regression
problem

min
C0

‖Y − �(X)�(I0 × C0 + Ĉ)‖2
2 + β‖��C0‖2

2. (9)

The solution to this L2-norm regularized problem can be
explicitly obtained as follows:

C0 = (
I�
0 �(X)�(X)� I0 + β���

)−1

× (
I�
0 �(X)Y − I�

0 �(X)�(X)�Ĉ
)
. (10)

With the explicit solution for the shared coefficients C0
obtained by fixing {Ct }T

t=1, we then optimize {Ct }T
t=1 by

fixing C0. The optimization of {Ct }T
t=1 can be separated into T

different tasks when C0 is fixed. For task t , the optimization
problem can be reformulated with the additional variables as
follows:

min
Ct

‖�(Xt )
�(Ct + C0) − Yt‖2

2 + γ ‖Ct‖1 (11)

which is a standard L1-norm regularized regression problem.
Such L1-norm regularized regression problems have been
extensively investigated in the past and can be solved using
various methods, such as those presented in [35]–[38]. The
final iterative optimization algorithm is given in Algorithm 1.

D. Time Complexity Analysis

We now present an analysis of the computational complexity
of Algorithm 1. In Algorithm 1, the computational cost mainly
arises from the optimization of (9) and (11). Note that the
eigenpairs in the first step of Algorithm 1 can be computed
ahead of time and stored for the following optimization steps.
Equation (10) is the closed-form solution to (9), and it can be
reformulated as follows:

C0 = (
I�
0 �(X)�(X)� I0 + β���

)−1

× I�
0 �(X) × (Y − �(X)�Ĉ). (12)

The computation of (I�
0 �(X)�(X)� I0 + β���) has a time

complexity of O(NT d2), and the computation of I�
0 �(X)

also has a time complexity of O(NT d2). In addition, the
computation of (Y − �(X)�Ĉ) has a time complexity
of O(NT d). Considering that the inversion of the matrix
(I�

0 �(X)�(X)� I0+β���) has a time complexity of O(d3),
the final computational time complexity for solving prob-
lem (9) is O(NT d2 + d3), which depends on the number of
training data for all tasks, the number of tasks and the number
of selected top eigenfunctions. For (11), the computational
time complexity is O(nt d2 + d3) if we solve it using the least
angle regression algorithm [38]. The optimization of (11) must
be performed for all tasks; therefore, the total time complexity
of solving {Ct }T

t=1 is O(Nd2 +d3). Suppose that Algorithm 1
runs for M iterations; then, the final time complexity is
M × O(NT d2 + d3). From this time complexity analysis,
we can conclude that the time complexity of our proposed
algorithm is independent of the dimensionality of the original
data. We can control the time complexity by varying the
number of selected top eigenfunctions. Consequently, our
proposed method is more suitable than other methods for
high-dimensional multitask learning problems.

IV. THEORETICAL ANALYSIS

In this section, we present a theoretical analysis to demon-
strate how the proposed method can better learn shared
information. Since C�

0 � represents the commonly shared
parameters and C�

t � represents the specific parameters for
the t th task, we will focus on analyzing the learning properties
for C�

0 �. Specifically, we show that the proposed method is
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Algorithm 1 Iterative Optimization Algorithm for EMTL

Input: Input data sets Dt , t = 1, 2, . . . , T ; initialize the variables C0 and {Ct }T
t=1 and the trade-off parameters γ and β.

Output: Shared coefficients C0 and coefficients for each specific task {Ct }T
t=1.

1: Explicitly compute the eigenpairs {λt i ,�t i }dt
i=1 for all tasks using formulation (5)

2: while (not converged) do
3: Compute C0 = argmin‖Y − �(X)�(I0 × C0 + Ĉ)‖2

2 + β‖��C0‖2
2.

4: for t =1 to T do
5: Compute Ct = argmin ‖�(Xt )

T (Ct + C0) − Yt‖2
2 + γ ‖Ct‖1.

6: end for
7: end while

argument stable [39] for learning C�
0 � and that the gener-

alization bound for learning C�
0 � has a convergence rate of

O(1/
√

nT ), which enables the proposed learning algorithm to
generalize quickly and accurately from a small training sample
when the number of tasks is large.

We first introduce the notion of argument stability [39],
which measures the impact of changing a single training
example on the function selected by the learning algorithm.
Intuitively, the learning algorithm is stable if its outputs are
not sensitive to subtle changes in the input, or in other words,
if the outputs do not change much when the changes in the
input training samples are small.

Definition 1 (Uniform Argument Stability [39]): Let D =
{(X1, Y1), . . . , (Xn, Yn)} be a training set consisting of n pairs
of independent random variables. Let C�

0,D�D denote the
output of a learning algorithm obtained by exploiting the
input training set D. We say that the learning algorithm is
α(n)-uniformly argument stable if for all i ∈ {1, . . . , n},
it holds that ∥∥C�

0,D�D − C�
0,Di �Di

∥∥ ≤ α(n) (13)

where α(n) ∈ R+ and Di = {(X1, Y1), . . . , (Xi−1, Yi−1),
(X ′

i , Y ′
i ), (Xi+1, Yi+1), . . . , (Xn, Yn)} represents the training

set D with the i th sample replaced with an independent copy
of (X ′

i , Y ′
i ).

We show that the algorithm for learning the commonly
shared parameter C0 in (6) is uniformly argument stable.

Theorem 1: If we assume that the variables ‖C‖2, ‖�(x)‖2,
K (x, x), and Y are upper bounded by ∧C , ∧φ , ∧2

K , and ∧Y ,
respectively, then the algorithm for learning C0 in (6) is
uniformly argument stable, that is,∥∥C�

0,D�D − C�
0,Di �Di

∥∥

≤ 2(2 ∧C ∧� + ∧Y )∧K

β min{n1, . . . , nT }T
+

√
4(2 ∧C ∧� + ∧Y ) ∧C ∧�

β min{n1, . . . , nT }T
.

(14)

To prove Theorem 1, we first introduce the notion of the
Bregman divergence.

Definition 2 (Bregman Divergence): Let f be a convex
function. For any s and t in its domain, the Bregman diver-
gence is defined as

B f (s‖t) = f (s) − f (t) − 〈s − t,∇ f (t)〉 (15)

where ∇ f (t) denotes the gradient of f at t .

It is easy to prove that the Bregman divergence is additive
and nonnegative. For example, if f = f1 + f2 and both
f1 and f2 are convex, then for any s and t in the domain,
we have

B f (s‖t) = B f1(s‖t) + B f2(s‖t) (16)

and

B f (s‖t) ≥ 0. (17)

We are now ready to prove Theorem 1. Let

L D
(
C�

0 �
)

= 1

T

T∑
t=1

1

nt

nt∑
i=1

⎛
⎝ d∑

j=1

(Ct j + C0 j )� j (Xti) − Yti

⎞
⎠

2

(18)

and

PD
(
C�

0 �
) = β

∥∥C�
0 �

∥∥2
2 + γ ‖C‖1. (19)

The objective in (6) can be written as

OD
(
C�

0 �
) = L D

(
C�

0 �
) + PD

(
C�

0 �
)
. (20)

Note that OD and PD are both convex with respect to C�
0 �.

Using the nonnegative and additive properties of the Bregman
divergence, we have

BOD

(
C�

0,Di �Di

∥∥C�
0,D�D

) + BODi

(
C�

0,D�D
∥∥C�

0,Di �Di

)
≥ BPD

(
C�

0,Di �Di

∥∥C�
0,D�D

) + BPDi

(
C�

0,D�D
∥∥C�

0,Di �Di

)
.

We attempt to upper bound BOD(C�
0,Di �Di ‖C�

0,D�D) +
BODi (C

�
0,D�D‖C�

0,Di �Di ) and lower bound

BPD(C�
0,Di �Di ‖C�

0,D�D) + BPDi (C
�
0,D�D‖C�

0,Di �Di ).

Specifically, let P2D(C�
0 �) = β‖C�

0 �‖2
2; then, we have

BPD

(
C�

0,Di �Di

∥∥C�
0,D�D

) + BPDi

(
C�

0,D�D
∥∥C�

0,Di �Di

)
≥ BP2D

(
C�

0,Di �Di

∥∥C�
0,D�D

) + BP2Di

(
C�

0,D�D
∥∥C�

0,Di �Di

)
= β

∥∥C�
0,Di �Di

∥∥2
2 − β

∥∥C�
0,D�D

∥∥2
2

− 〈
C�

0,Di �Di − C�
0,D�D, 2βC�

0,D�D
〉 + β

∥∥C�
0,D�D

∥∥2
2

− β
∥∥C�

0,Di �Di

∥∥2
2 − 〈

C�
0,D�D − C�

0,Di �Di , 2βC�
0,Di �Di

〉
= 2β

∥∥C�
0,Di �Di − C�

0,D�D
∥∥2

2.
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We further upper bound BOD (C�
0,Di �Di ‖C�

0,D�D) +
BODi (C

�
0,D�D‖C�

0,Di �Di )

BOD

(
C�

0,Di �Di

∥∥C�
0,D�D

)
+ BODi

(
C�

0,D�D
∥∥C�

0,Di �Di

)
= OD

(
C�

0,Di �Di

) − OD
(
C�

0,D�D
)

− 〈
C�

0,Di �Di − C�
0,D�D,∇OD

(
C�

0,D�D
)〉

+ ODi

(
C�

0,D�D
) − ODi

(
C�

0,Di �Di

)
−〈

C�
0,D�D − C�

0,Di �Di ,∇ODi

(
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0,Di �Di

)〉
= OD

(
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0,Di �Di

) − OD
(
C�

0,D�D
) + ODi

(
C�

0,D�D
)

− ODi

(
C�

0,Di �Di

)
. (21)

The second equality holds because C�
0,D�D and C�

0,Di �Di

are the minimizers of OD(C�
0,D�D) and ODi (C�

0,Di �Di ),

respectively, and ∇OD(C�
0,D�D) = ∇ODi (C�

0,Di �Di ) = 0.
Thus
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×
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×
∥∥∥∥∥∥

d∑
j=1

(C0 j,D�D − C0 j,Di �Di )
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2

+8(2 ∧C ∧� + ∧Y ) ∧C ∧�

T nt

≤ 4(2 ∧C ∧� + ∧Y )∧K

T nt

∥∥C�
0,D� j,D − C�

0,Di � j,Di

∥∥
2

+ 8(2 ∧C ∧� + ∧Y ) ∧C ∧�

T nt
. (22)

Combining (21) and (22), we obtain

2β
∥∥C�

0,D� j,D − C�
0,Di � j,Di

∥∥2
2

≤ 4(2 ∧C ∧� + ∧Y )∧K

T nt

∥∥C�
0,D� j,D − C�

0,Di � j,Di

∥∥
2

+ 8(2 ∧C ∧� + ∧Y ) ∧C ∧�

T nt
. (23)

We then have
∥∥C�

0,D� j,D − C�
0,Di � j,Di

∥∥
2

≤ 2(2 ∧C ∧� + ∧Y )∧K

βT nt
+

√
4(2 ∧C ∧� + ∧Y ) ∧C ∧�

βT nt
.

(24)

�
Theorem 1 implies that when the training set is changed by

one example, the change in the output C�
0 � will vanish as the

training set size n or the number of tasks T goes to infinity.
This is the property of algorithmic stability, which can be
used to derive the generalization bound [40]. By employing
the result of Liu et al. [39] (Theorem 2 therein), we can
easily derive a deformed generalization bound for the pro-
posed algorithm with respect to the parameter C�

0,D�D . This
deformed generalization upper bound will have a convergence
rate of O(1/

√
nT ) with respect to the training set size n and

the number of tasks T , which implies that with an increase
in either the training set size n or the number of tasks T ,
the generalization error will decrease. Specifically, in the
proof of Theorem 1, we can see that the convergence rate
of O(1/

√
nT ) is introduced because of Ct . If Ct = 0, then

the generalization bound for learning the commonly shared
parameter will converge faster, with a rate of O(1/nT ). The
advantage of multitask learning has thus been demonstrated
for learning C�

0,D�D . The empirical validations presented in
Section V also support these theoretical results.

The generalization error measures the difference between
the training and testing errors. A small generalization error
bound does not imply a small test error. A small testing
error should additionally be based on a small training error.
The choice of � in this paper also essentially guarantees
a small training error in (6) because it guarantees a small
reconstruction error in the feature space. Then, (7) functions
similar to a representer theorem but with a clear structure of
commonly shared parameters in the multitask learning setting.

V. EXPERIMENTS

In this section, we present and analyze experimental results
obtained on three benchmark multitask learning data sets
to demonstrate the effectiveness of our proposed multitask
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TABLE I

COMPARISON OF RESULTS OBTAINED ON THE SCHOOL DATA SET USING THE MSE

TABLE II

COMPARISON OF RUNNING TIMES (SECONDS) ON THE SCHOOL DATA SET

learning algorithm. The three data sets used in our experi-
ments are the School data set,1 the Computer data set [41],
and the Isolet data set.2 These three data sets have been
widely used for evaluating the effectiveness of multitask
learning in various works [1], [7], [9], [11], [25]. The exper-
imental results of our proposed EMTL method are com-
pared with those of three single-task learning algorithms and
several state-of-the-art multitask learning methods. The first
two single-task learning methods are kernel ridge regres-
sion (KRR) and a single-task learning method based on
explicitly learned eigenfunctions feature-based single task
learning (FSTL) [15]. The third single-task learning method
is FSTL_multiple (FSTL_M), which is based on FSTL but
considers the eigenfunctions learned from all tasks. The
multitask learning methods are CMTL [7], multitask rela-
tionship learning (MTRL) [33], and the convex learning of
multiple tasks and their structure (CMTS) [34]. These mul-
titask learning methods are representative methods that have
achieved promising performance on various multitask learning
data sets. Consequently, comparisons with these methods can
sufficiently demonstrate the effectiveness of our proposed
method.

A. School Data Set

The School data set is one of the most widely used multitask
learning data sets. It was collected from the Inner London
Education Authority. This data set consists of 139 tasks,
each of which corresponds to the prediction of examination
scores at one secondary school. The provided data include
the examination scores of 15 362 students from 139 secondary
schools in 1985, 1986, and 1987. Each sample includes four
school-dependent features, three student-dependent features,
and the year of the examination. The four school-dependent
features are the percentage of students eligible for free school
meals, the percentage of students in voltage regulator (VR)
band one, the school denomination, and the school’s gender
composition. The three student-dependent features are gender,
ethnic group, and VR band. To ensure fair comparisons
with the other methods, we considered 27-dimensional binary
variables for each sample, following the same setup as in
previous multitask learning studies [7], [33], [42].

1http://ttic.uchicago.edu/∼argyriou/code/
2https://archive.ics.uci.edu/ml/datasets/ISOLET

To evaluate the effectiveness of our proposed multitask
learning method, we randomly selected 10%, 20%, or 30%
of the data for each task as the training data. The remaining
samples were split into the validation set and the test set.
To avoid statistical outliers, we repeated this selection process
10× for all methods, and we reported the mean performance
and the standard deviation across the 10 trials. All meth-
ods utilized an radial basis function (RBF) kernel, and the
best parameters for different tasks were selected based on
the validation set. The number of top eigenfunctions was
also empirically selected based on the validation set. If all
nonzero eigenvalues and their corresponding eigenvectors were
used, the best performance would be achieved. However, this
approach would also increase the computation time of our
proposed algorithm. We therefore attempted to reduce the
number of eigenfunctions used for each task in our proposed
method while guaranteeing its performance. For the School
data set, the top 10 eigenvectors were used in our method.
We evaluated the performances of all regression methods using
mean squared error (MSE). The results are shown in Table I.

From the results shown in Table I, we can conclude
that all multitask learning methods outperformed two of
the single-task learning methods, further demonstrating the
effectiveness of multitask learning compared with single-task
learning. Notably, our proposed EMTL algorithm consis-
tently performed the best as the training ratio increased from
10% to 30%. The FSTL_M method, which used the eigenfunc-
tions from all tasks without considering how the eigenfunc-
tions were shared among tasks, performed the worst. This poor
performance might be caused by the introduction of noise from
other tasks. We can also conclude that the proposed method
effectively measures the relatedness among tasks, particularly
when the number of training samples is insufficient. In single-
task learning, sufficient information about the distribution of
the training data cannot be obtained when limited data are
provided. By contrast, our proposed method extracts more
information by considering the relatedness among different
tasks. In addition, our proposed method achieves better per-
formance using 10% of the training data than other methods
achieve using 30% of the training data.

To better illustrate the computational efficiencies, we com-
pared the running times of all methods on a PC with
a 4.0-GHz Intel Core CPU and 16 GB of memory. The results
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TABLE III

COMPARISON OF RESULTS OBTAINED ON THE
COMPUTER DATA SET USING THE MSE

are shown in Table II. Note that the running time is the
total time required to solve all tasks and that the experiments
were repeated 10×. The mean time and standard deviation are
reported. We can conclude that multitask learning algorithms
require much more time than single-task learning algorithms.
Our proposed EMTL method has a much lower time cost than
CMTL and MTRL. CMTS is the most efficient method. This
result is mainly because CMTS has closed-form solutions for
each step. However, the cost time of our EMTL method is
comparable to that of CMTS as the number of training samples
increases, and our proposed EMTL method achieves much
better performance.

B. Computer Data Set

In this section, we report on the experiments conducted
on the Computer data set, which contains people’s ratings of
computer products [41]. This data set includes the results of a
survey of 180 people who rated their tendency to buy 20 differ-
ent computers. Each person is regarded as one task, following
the same experimental setup as in previous works. Each com-
puter is represented by a 13-dimensional binary feature vector,
which includes telephone hotline availability, amount of mem-
ory, screen size, CPU speed, hard disk, CD-ROM/multimedia,
cache, color, availability, warranty, software, guarantee, and
price. The output is an integer rating that scales from 0 to 10.
To facilitate computation, one dimension representing the bias
term was added. Following the same setup used in previous
works, the first eight examples from each person were used
as training data, and the last four examples were used as test
data. We chose the top eight eigenfunctions from each task to
approximate the final regression function. We used the same
evaluation measurement, the MSE, as used on the School data
set to evaluate the performance. All methods used an RBF
kernel, and the best parameters were selected based on the
validation set.

The results are reported in Table III, based on which we
conclude that the multitask learning methods outperform the
single-task learning methods. Our proposed EMTL method
and CMTL exhibit the best performance, with similar MSE
values. In addition, we show the running times of all methods
on the Computer data set in Table IV, and conclusions similar
to those obtained on the School data set can be drawn.

We also illustrate the learned shared coefficients C0 and
task-specific coefficients C = [C1, C2, . . . , CT ]. For the
Computer data set, the training data for each task are the
same. Consequently, the explicitly learned eigenfunctions
for each task are also the same. This is the reason why
FSTL and FSTL_M achieve the same MSE and the same

TABLE IV

COMPARISON OF RUNNING TIMES (SECONDS)
ON THE COMPUTER DATA SET

Fig. 2. Illustration of the absolute values of the eight shared coefficients (C0)
learned from the Computer data set. Black areas denote zero values, and the
value increases as the color changes from black to white. Only the coefficient
of the 6th eigenfunction is close to zero, which means that all tasks share
seven eigenfunctions, leading to high relatedness.

Fig. 3. Illustration of the absolute values of the nonshared coefficients for
individual tasks learned from the Computer data set. The coefficients of the
task-specific eigenfunctions are sparse.

computation time. We only have to learn the coefficients for all
tasks from the selected top eight eigenfunctions. The absolute
values of the learned coefficients are shown in Figs. 2 and 3.
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TABLE V

COMPARISON OF RESULTS OBTAINED ON THE ISOLET DATA SET USING THE MSE

TABLE VI

COMPARISON OF RUNNING TIMES (SECONDS) ON THE ISOLET DATA SET

TABLE VII

COMPARISON OF RESULTS OBTAINED ON FIVE ISOLET TASKS USING THE MSE

Black areas denote zero values, and the value increases as
the color changes from black to white. From Fig. 2, we find
that the coefficient of the 6th eigenfunction is close to zero,
which means that seven of the eight eigenfunctions are shared.
From Fig. 3, we find that the coefficients of the task-specific
eigenfunctions are sparse. We can conclude that the different
tasks in the Computer data set are closely related. The reason
the coefficient value for the second eigenfunction appears quite
high compared to the rest of the values may be that the second
eigenfunction is important to all tasks. This can also be seen
in the results in Fig. 3. The task-specific coefficient for the
second eigenfunction appears to be large for almost all tasks.
Therefore, we can conclude that the second eigenfunction is
the most important of the eigenfunctions to most of the tasks
and should be shared among the tasks with a large coefficient.

C. Isolet Data Set

We report the results of testing the performance of our
proposed multitask learning method on the Isolet data set in
this section. This data set concerns the pronunciation of the
letters in the alphabet by 150 speakers. Each speaker spoke
each letter twice; thus, 52 examples were collected from each
speaker. The speakers are grouped into five groups: Isolet-1,
Isolet-2, Isolet-3, Isolet-4, and Isolet-5. Thus, there are five
tasks, one corresponding to each of these five groups, which
contain 1560, 1560, 1560, 1558, and 1559 samples, respec-
tively. Each letter is related to a label (1–26), and we treat
all tasks as regression problems, following [9]. We randomly
selected 10%, 20%, or 30% of the data as the training set, and
the rest of the data was split into the validation set and the
test set. To avoid statistical outliers in the experimental results,
we repeated all experiments five times, and we reported the
mean performance with the standard deviation. An RBF kernel

was used in all methods, and the best parameters were selected
based on the validation set. We again used the MSE to evaluate
the performance of each method.

Based on the results shown in Table V, we can again
conclude that all of the multitask learning methods except
CMTL outperform the single-task learning methods. This
result is because considering the sharing of common features
across tasks is not an adequate means of measuring the
relatedness among tasks in the Isolet data set. In addition,
the performance of FSTL_M is similar to that of FSTL. This
finding indicates that FSTL_M cannot learn additional infor-
mation about the data from the eigenfunctions of other tasks
without considering the shared eigenfunctions. Our proposed
EMTL method consistently achieved the best performance
across the different training ratios. These findings demonstrate
that measuring task relatedness through eigenfunctions enables
better exploration of the information contained in this data
set that can be achieved with the other methods. In addition,
we present the running times of all methods in Table VI, using
the same settings as for the School data set. We can again
obtain conclusions similar to those found in the School data
set and the Computer data set.

In Table VII, we present additional experimental results to
enable an analysis of the performance improvement on each
task when our proposed method is used. This experiment was
conducted with 30% of the data as the training set and the
remaining data split into the validation set and the test set.
All experiments were repeated five times to avoid statistical
outliers, and the best parameters were selected based on the
validation set. Based on the performance of the single-task
learning methods, we can conclude that the difficulty varies
among the different tasks and that task 4 is the most difficult
one. Compared with the single-task learning methods, all
of the multitask learning methods except CMTL showed
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Fig. 4. Sensitivity analysis of EMTL with respect to the parameter γ .

Fig. 5. Sensitivity analysis of EMTL with respect to the parameter β.

improved performance on all tasks. For the more difficult
tasks, limited information about the distribution of the data was
available from their training data. However, multitask learning
methods can extract more shared information relevant to these
tasks, leading to performance improvements. Our proposed
multitask learning method effectively measures the relatedness
among tasks and significantly improves the performance on all
tasks, particularly difficult ones.

D. Sensitivity Analysis of EMTL

In this section, we report experiments conducted to analyze
the sensitivity of our proposed EMTL method to the regular-
ization parameters β and γ . All experiments were conducted
on the School data set with a training ratio of 10%.

All parameters, including β and γ , were selected to achieve
the best performance on the validation set for all experiments
in this paper. We conducted a grid search of β and γ within
the set {10−3, 10−2, 10−1, 1, 10, 102, 103}. For the School
data set, we used an RBF kernel with a bandwidth of 10.
As seen from experiments on the validation set, the best
performance was achieved with parameter values of γ = 100
and β = 1. Consequently, we analyzed the sensitivity of
EMTL to γ with a fixed value of β = 1 and analyzed the
sensitivity of EMTL to β with a fixed value of γ = 100. The
results are shown in Figs. 4 and 5. From these results, we can

TABLE VIII

COMPARISONS BETWEEN OUR PROPOSED METHOD AND
THE SECOND BEST METHOD IN TERMS OF P -VALUES

conclude that the performances in the experiments were better
for γ values larger than 10 and β values near 1. These findings
indicate that the coefficients {Ct }T

t=1 of the task-specific eigen-
functions tend to be smaller than the coefficients C0 of the
shared eigenfunctions. Therefore, the shared eigenfunctions
play a more important role, and for each task, additional
valuable information can be obtained from the training data
associated with other tasks. The performances on all tasks
should improve in such a situation.

E. Analysis of P-Values

In this section, we present an analysis of p-values obtained
using the t-test to show that our proposed method is statisti-
cally significantly better than the next best method. We per-
formed t-tests only on the School data set and the Isolet
data set because the training and test samples in the Computer
data set are fixed.

From Table I, we can see that on the School data set,
MTRL performs the second best when the training ratio is 10%
or 20% and that CMTS performs the second-best when the
training ratio is 30%. We therefore compare our EMTL method
with MTRL for training ratios of 10% and 20% and with
CMTS for a training ratio of 30%. Similarly, we compare our
EMTL method with MTRL for training ratios of 10% and 20%
and with CMTS for a training ratio of 30% on the Isolet data
set. The results are shown in Table VIII. We can conclude that
our proposed method performs significantly better than the
second-best methods, as the p-values are substantially smaller
than 0.05 for all training ratios on both data sets.

VI. CONCLUSION

In this paper, we propose a method for learning multiple
tasks from a new perspective. Unlike previous multitask learn-
ing methods, in which task relatedness is measured through
parameter sharing or feature sharing, our proposed multitask
learning method learns task relationships by considering a
shared set of eigenfunctions. These eigenfunctions can be
explicitly learned and easily extended to any kernel type.
Consequently, we only have to learn a set of shared coefficients
for all tasks and a set of task-specific coefficients for each
task. The objective function can be optimized by means of an
iterative algorithm, which divides the optimization problem
into two subproblems: L2-norm regularized regression and
L1-norm regularized regression. We also present a detailed
theoretical analysis to demonstrate that our proposed algorithm
is uniformly argument stable and that the convergence rate
of the generalization upper bound is related to the number
of training samples and the number of tasks. The findings
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imply that learning multiple tasks simultaneously can help
improve performance. Various experiments were conducted
on several multitask learning data sets, and the experimental
results demonstrate the effectiveness of our proposed method.
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